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no moments the differential equations
for the angular velocity can be solved independently of the remaining
equations of motion. The integral curves are intersections of the energy
and angular momentum ellipsoids, which have common centers and principal
axes. In general, there are four types of closed integral curves. It

is well known that if the solid contains a cavity that is topologically
equivalent to (i.e., continuously deformable into) the interior of a
sphere and is completely filled with non-viscous incompressible fluid,
the properties mentioned above remain valid. However, if the cavity is
topologically equivalent to the interior of a torus, the fact that the
£1uid may
new possibilities. The angular velocity integral curves are still inter-
sections of ellipsoids with parallel principal axes, but one of the centers

on the parameter I
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If [ = 0 there are generally four types of closed integral curves; five

for "weak" circulation; three for "intermediate" |[| ; and one for "strong"

1 T1. The qualitative nature of the integral curves for solids with
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cavities of greater topological complexity has also been analyzed. The

number of distinet types of behavior is surprisi

fact, still closely akin to that of bodies with
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oroidal cavities.
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1. INTRODUCTION

To determine the motion of a liquid-filled solid is an important and
difficult problem in dynamics. In actual applications the liquid is
viscous and need not completely fill the cavity in which it is stored.
However, when one attempts to attack this problem, a natural model with
which to begin is that of a cavity completely filled with an incompressible,
non-viscous liquid in irrotational motion.

If the cavity is topologically spherical, (i.e., homeomorphic to the
interior of a sphere), then in this model the liquid filling introduces no
dynamic novelties. The differential equations of motion of the solid-liquid
system can simply be considered to be those of a solid with a different
mass and different inertial matrix. Among its other shortcomings there is
no possibility for including in this unsteady irrotational flow a "spin"
or general circulation, such as one would expect to obtain if, for example,

the container itself is spinning.

If the cavity 1is topologically equivalent to the interior of a torus,
it becomes possible to have unsteady irrotational flow with circulation,

r . Unfortunately I must be constant, a fact which seriously restricts
prospective application of the following theory. Nevertheless it seems
worthwhile to investigate the influence of circulation on the motion of the
composite solid-liquid system. For this purpose, the most natural aﬁd
easiest problem to consider is the classical one of motion under no forces

and moments.

If we consider a system with no special symmetry, the results may be

summarized as follows. As will be shown later, the range of 2 must be
divided into three intervals with end points O, f'22, riz, and co. For

™ = 0 we obtain the classical result that there are six possible steady
states of rotation, four of them stable, the other two unstable. Roughly
speaking, there are four periodic types of angular motion, each centered
about one of the stable steady states. For weak circulation,

2 2
0 < r < r'2 s there are still six steady states, four of them stable.



Now, however, in addition to four previously mentioned types of periodic
motion, each centered about one of the stable steady states, there is now
a fifth type of periodic motion centered about two stable steady states.
For intermediate circulation, I 22 < F'2 < r'le, there are four steady
states, three of them stable, and three types of periodic motion. Finally,
for strong circulation, I 2 < r'2, there are two stable steady states,

1
and one type of periodic motion.

Certain types of degeneracy are associated with appearances of
multiple characteristic roots of a matrix involved in the theory, or

special orientations of an '

'axis" vector associated with the cavity. An
important example of such degeneracy occurs for axisymmetric liquid-solid

systems.

If the cavity is of topological genus N, i.e. topologically equivalent
to the interior of a sphere with N handles, the analysis of the possible
motions can be pertormed by an extension of the methods developed for the
discussion of toroidal cavities (N = 1). With a cavity of genus N we
assoclate N "axis" vectors, of which not more than three can be linearly
independent, of course. This yields the conclusion that there are
essentially four types of motion for bodies with liquid-filled cavities of
genus N, depending on the number, between zero and three, of independent
"axis" vectors. Two types correspond to topologically spherical or toroidal
cavities (N = O or 1). We conjecture, without proof, that the other two
types correspond to cavities of genera N = 3 or 4. The measure of arbi-
trariness avallable for the choice of circulations for cavities of genus
N 2 L merely serves to provide a greater variety of assignments of
circuiation that will produce the same motions as a body with a cavity of

genus N < 3.



2. FLOWS WITH MOVING BOUNDARIES

The most commonly discussed problem that involves rigid bodies and
a non-viscous incompressible fluid concerns the motion of a finite solid
through an infinite region filled with fluid(g’s). The method used for
this classical problem requires only slight modification to adapt it to
develop the equations of motion of a finite rigid body that contains a
‘cavity completely filled with fluid. However, since our purpose in the

following discussion is to emphasize the influence of circulation and

since the derivation is comparatively short, for the sake of completeness

and clarity we shall reproduce it here.

First choose a moving system of réctangular coordinates relative to
axes rigidly attached to the body and with origin at the center of mass
of the combined mass of body and fluid. At any time t also choose coordi-
nates (x,y,z) relative to a system of axes fixed in space that coincides
with the instantaneous position of the moving axes. At this instant the
position of any point in the body or the fluild can be specified by its
coordinate vector x = (x,y,z). Also at time t let u(t) = (ux, u_, uz)
be the velocity of the moving origin, and let z(t) = (wx, wy, v, be the

angular velocity of the moving system relative to the fixed axes.

Now suppose the body contains a cavity filled with incompressible
nonvigscous fluid of density Pre Let Vi be volume occupled by the cavity,
and S. its boundary. If we assume that the motion of the liquid was

L
started impulsively from rest, then by Kelvin's theorem it will be

irrotational. Accordingly, the velocity of the liquid can be expressed
as '
U (x, 8) = V&(x, t) (2.2)
_ .

for some velocity-potential function @ such that

V2 = 0 -in vy (2.2)



and subject to the condition that on, S_ the normal component of the

L
velocity of the fluid relative to that of the boundary vanishes.

Let

XL be any point of SL and n the corresponding unit normal directed into

o —

VL' Then we must have
I FETAY LN 1 P Y
30/n = 5 VO ) = oa- [ w®) +u) xx ] on s (2:3)

Since n = n(x) at time t, tentatively choose

® ( (x) + w(t) = olx) (2.4)

(RSN

x, t) = u(t) -

Then (2.2) and {2.3) will be satisfied if we choose ¢ (x) and ¢ (x) to be

single-valued solutions of

vee - o, VA

la
1]
O

in v (2.5)

and

on S (2.6)

-t

d¢/dn = n - Vo = n
-V

a
iq
=
=
[}
-

n

y = X X n

I

If éL is topologically equivalent to the interior of a sphere, then
d, é, zmdg must all be single-valued, and as solutions of Newrann problems
they must be urique except for additive constants. TIf, however, VL is
topologically equivalent to the interior of a torus, and if we overlook
the question how one would create a general circulation in the cavity,
and thus abancdon the impulsive start from rest, then @ need no longer

be single-~valued. This can be seen by considering the circulation

v 4 f' 7 A 1o =N
() - vy {x, ) .ax = J e (2.7)
c - c
abvout any simply-closed path C in V Now form [ {Ci) for any other

simply closed path C' which can be continuously deformed into C without

crossing SL. If under this deformation the sense in which C' is traversed

!

in r{C') corresponds to the sense of C in © {C), then by Stokes' theorem
r

r{c') = r{(c); otherwise r (C') = - (C). If, in particular C can



be continuously deformed into a point within VL, then 1~ (C) = 0. On
the other hand, if C loops once, and C' loops N times in the same sense
about the hole of the torus, then r (C') =N r (C). Thus, for all
single loops traversed in the same sense we get the same circulation

r(c)=r . If r #0, (2.7) implies that ® must be multiple-valued.
Accordingly, let us modify (2.4) to the form

P (x, t) = u(t) - glx) +w(t) . g(x) + F(x)  (2.8)
where in addition to (2.5) and (2.6) we require

Var=o0 in V. ' (2.9)

dt/am =n -V1=0 on 8 (2.10)

and though the components of V T are single~valued, 7 increases by unity
when a closed loop about the hole of the torus is traversed once in an

arbitrarily selected positive sense. By Bernoulli's theorem
2
- p/pp = 0®/3t + 0.5 (VP)™ + gG(t) » x + F(t) (2.11)

where G(t) is a unit vector parallel to the gravitational field and F(t) is
some function of t. Since the pressure, p, must be single~valued in VL’
then d M /at = 0, i.e. I must be a constant.

Hereafter it will suffice to consider (2.8) without special reference
to (2.4), since results for topologically spherical cavities can be deduced
by merely setting ™ = O in the following discussion.

For general cavities Vi of finite extent, which are not necessarily
even topologically toroidal,

) =x | (2.12)

satisfies (2.5) and (2.6). The discussion of g(x) and 7(x), however,
cannot be continued without specializing VL' This will be done for
axisymmetric cavities in Section 7.



3. LINEAR AND ANGULAR MOMENTA OF THE LIQUID

To formulate the equations of motion of our composite solid-liquid
system we shall require the linear and angular momenta of the liguid.

Iet £ {t) be the linear momentum, and k an arbitrary constant vector. Then

EL-E=fVLpLIE-V¢dV=Jl+J2+J3 (3.1)

[

where, in accordance with (2.8) and {2.12), the scalars J are defined

below. First

where MI. 1s the total mass of the liquid. Next
» Py
J2/pL=jVLl—{..V(E.£)dV =fVLV(E.§),V(!,E)dv

By Green's theorem and (2.6)

TolPy = 'JrsLE’E d (v - g)/m as
r .
= - J gk x)(wxx-n)as
L
= f 9. [/ . vy 1 ..
_ JVL A -V |
= fv ¥xx -k dv
Thus
b = M ¥vxx -k . (3.3)

where X, is the center of mass of the liquid. Finally

I./p,
o L I,

B 'rfSL (k + x) 3t/ as

10



whence by (2.10)
J, = O
2

Since k was arbitrary, these results imply

£ = M (u+wxx)
2L LTIt

Next, let qL(t) be the angular momentum of the liquid.

= o \Y v = J J
U A VPav = I, + 4,

for the following choices of vectors i. First

Ie

5= [y pmxaar - g

Next, by Green's theorem and (2.6)

(3.4)

\J3

~~
N
.

~r

Then

~~
N
U]
(A
N

(3.7)

ey <[y xx V- oa = -f Ve[ o9x
- LT B 'L L
=..f (w - o)xxnds = -f (w + o) dg/om ds
s, ‘= =/="= s, ‘= =7 "=
o] i
[ V-0 -Voav (5.8)
JVp T - - =
Finally
rJ »
I/, F =], xxYr1av = - |V x (1x)dv
—\J a2 JIL "L
By means of some surface S*¥ bounded by a closed curve C* on SL change VL

into a topologically spherical region in which T is single valued. Ilet
T on the "initial”

corresponding functions

n i and T, denote the lnward unit normal and value of

i
side of S¥, and let and T, = 7, + 1 be the

R e T T e
at the same points on the opposite or "final'side of

11

S‘* L

%/erng*/pL = -fSL (EXE)TdS+fs*

Then

\
I4

]av

”



Later, in order to simplify the equations of motion, we shall make
transformations of coordinates that can be most easily motivated by
exploiting the relation between EL’ HL’ and the kinetic energy TL of
the liquid(e’i). We have

- 2 o
r, = fVLpL(Vcb) W = Jy g+ T (3.10)
vwhere
2
Iy = vapL (u+V ¥ - 0) av (3.11)
Jog = Ef" p. M(u+Ywvw * o) - Vr1av
o J VL TV - =
- —2f o _ 2 _ % R
J = 1 vt a = °
9 !j vy { ) r d9 (3.12)
By Green's theorem
r ]
sg = 2o, [, V(u-x+w-o) - Vrav
8 L J v L A
= - 2p r‘f (u-x+w:- g) d7/dn ds
L S ‘= == =
whence by (2.10)
Jg = © (5.13)
Now observe that
BTL/BB = Jf__Lvacp av = -§-L (3.14)
Also
5T7/5W=r DTV®°V v dV = r..p_(u+v-w-r_r+l,‘\7ﬂ-\7
L= JVL-Lo - JVLL,‘.. v L2 \ A v

If in 38 we set u = O we obtain for any w
r =
JvaL rvt- Vg dav = 0

12

[=



Thus by Green's theorem and (2.6)

(am/aw)fey = [, V(- x+u-0) Vg av
L J v
- - f (4 « v 4w o) n 48
) s \BUTEVE g, xxn oo
- (. [ 1 av
Jv Vr|[@ xru-ox]
=[V 5xV(¢-l"r) av
Hence
L A/dw +  J* (3.15)

where we shall call i* the axis-vector associated with T.

It will prove convenient to write TL in matrix notation. First
observe that

2 - . 2
J, = M u +2vapLu Vv ng+ijPL(VE a)” av

Thus, if we interpret U and v as column vectors, then

= T T * 2
2Ty = Mu" Tu + QBTBL W+ WC W+ J9 — {3.16)
where I is the 3 x 3 identity matrix, BL and CL are matrices with constant
elements, and
T ( \
CL = CL \3-171

where the superscript T denotes "transpose", and J * is a constant. Since,

9

by repeatedly used manipulations



u'B, w/e,

¢
e
]
E

o)
)
1

fv u-Vyr-rg av =

J VL

- [s (@ ww-xxnas
L

v vax(u x) x av
I

»

,I‘! (w « uxx)adv

Mot QXX
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4. LINEAR AND ANGULAR MOMENTA OF THE SOLID

Let V, be the volume occupied by a solid of mass MS’ density Pg»

and with center of mass at ES' Then the linear momentum of the solid is
—E’S =fVSpS(2+-"-'x§)dv=MS(E+EX-’ES) (¥.1)

and its angular momentum is

ng = JrVSpSEX(EJ'Exf)dV
L 2 v (4.2)
-MSES.SXE vaps[iz-(z .)E)EJ

Its kinetic energy T, can be calculated from

2
s fvsps (u + ¥ x x)” av

i

2T

2 3 f 22 2
= Msl_l +2M¢ EXESJ'.!VSPS!.EY- -(ﬁ'z)]dv (4.3)
Clearly
£, = A /ou (k)
Ny = M/ (k.5)
In matrix notation TS takes the form

T T T PR

2Ty = Mg u IE+EEBS.‘1+ECSE (k.0)

where B, and C_ are constant matrices, and

¢’ = ¢ - (4.7)

4]
to
| =
i
=
e
1=
”

Xg (4.8)

15



5. EQUATIONS OF MOTION
For the composite liquid-solid system the total kinetic energy

T = 0.5 MuT Iu+uTBw+0.5 wTCw+' r 2 an (5.1)
= = = — — — j s N

where M = ML + MS is the total mass, B = B, + B

L g’ and C = CL + C_, are

S
constant vectors, and

c- = ¢C (5.2)

(s}

Since T must be a positive definite quadratic form in Ir © and the components
of u and W, then as a matter of fact C must also be positive definite
(3.18) and (4.8) imply

ey = w - wx [ Mg+ | (5.3)

Hereafter we shall assume that the origin is at the center of mass of the

composlte system. Thus M x. + M_x_, = O, which implies
L=l - 0
B = O (5'1+)

The linear and angular moments are & = §L + §3 and 1 = Ut + Ig- In

accordance with the results of the preceding sections

(a4
I

M/du = Mu (5.5)

1 OT/dvw + M I* = Cw + FJ¥ (5.6)

If F and I are the resultants of the external forces and moments actin

the composite system, then the equations of motion become

5]
b]

Mu' +¥xu) = F (5.7)
Cw' +wx(Cw+rJ*) = L (5.8)

where ' denotes d/dt. Note that C is entirely determined by the geometry of
the system and its mass distribution. The circulation of the fluid manifests

itself only in the term ™ J* of (5.8).

e
©

'_l



6. MOTION SUBJECT TO NO EXTERNAL TORQUE

The motion of a rigid body in the absence of external torques is a
4\
AL
standard topic for mechanics textbooks( 7, Accordingly, the case L = O,
which occurs for example for moticn iIn a uniform gravitaticnal field,

should be ideally suited to bring out very clearly the novelties introduced
by the inclusion of circulation.

For L = O (5.8) becomes
Cw' +wx (Cw+rJg*) = 0 (6.1)

Accordingly it 1s possible to determine the angular velocity w(t) indepen-

dently of u(t). This system has two well-known integrals

m _~

WCw = 2% (6.2)
and

(cz+r£*)T (Cw+rJ*) = K (6.3)

where the constant T% 1s that part of the kinetic energy associated with
w, and the constant K is the square of the magnitude of the angular

momentum vector. If the rectangular components of v are interpreted as

rectangular coordinates, (6.2) is an ellipsoid with center at w = 0, and
2\ g -1 -
(6.3) is an ellipsoid with center at w = - ™ C ~J* which is in general

Thus the integral curves of (6.1) are intersections

different fr
ids, but by contrast with the more familiar case [I” = 0, the

of ellipso

N
=
n
o r

centers of the ellipscids nc longer coincide.
Tt should be remarked that under the transformation w(t) =ro ( rt)
{6.1) takes the form

cag/a rt + @2 x (CQ

Iﬂ
";.1
-
)
o

Thus, 1f the structure of the solutions of (6.1) has been determined for
one value of ©# O, then 1t is known for all M £ O. We shall not exploit
this fact, however, in the sequel.

7



Hereafter, let us suppose that T* has been prescribed. To gain a
comprehensive view of the behavior of the associated one-parameter family
of 1ntegral curves for given I, let us consider the level curves of the
function K(w), defined by the left member of (6.3), on the energy ellipsoid
(6.2). TLet us begin by determining the critical points on (6.2) for which
K(w) 1s stationary. Proceed by Lagrange's method of undetermined multipliers.

Let
T T
F(w, A) = (Cw+rJ*) (Cw+rJ*) - a(wcCw - 2T%)
Then at the desired critical points
aF/ag = 2CT(Cy_+l"£*)-2xCE = 0

and dF/O\ = O, which merely reasserts (6.2). Now by (5.2) ¢t = c. Since,
furthermore, C is non-singular, then BF/BH = 0 implies

(C-2I)w = -TJ* (6.4)
If A is not a characteristic root of C, then the critical points of K(E)
are defined by

-1
= - - %

o C-21) " ryJg (6.5)
as functions of A. Of course these are merely the singular points of the
system (6.1). Then (6.2) and (6.5) imply

=1 -

_q*T (C -2 Iy c(c-n1I) 1 J* = om/r 2 (6.6)
from which )\ must be determined. In accordance with (5.1) T*/ 1 2 is
proportional to the ratio of the kinetic energy due to w to that due to

To simplify our discussion, let us assume that the X' coordinate

axes have been chosen to be parallel to the principal axes of C. Then

D 0 0 \
cC = 0 E 0 )
0 0 F

and, in general, we may assume

OK DCKEKXTF (6.7)

18




If we also assume Q?T = "(J, kX, £), then (6.5) and (6.6) take the special

forms

w, = (i/x-D, k/»-E, £/»~F) (6.8)

and

ng(x-D)_z + EK (>»-E)'2 + FE° (>»-F)"2 = 2™/ e (6.9)

If in (6.9) we consider T*/ I 2 %o be a function of A, then since
dg(T* r'_z)/dxz >0 always, d(T* I -2)/dx always increases. Accordingly
the graph of T* M -2 has the qualitative form shown in Figure 1, with the

horizontal asymptote T* r"2 = 0 and three vertical asymptotes A = D, E,

or F. let T™*I 1-2 and T* ™ 2_2 be relative minima of T™* I -2, and assume
-2

™ 1 < T* F’2-2, though the sense of this inequaléty 1s not essential
in the sequel. Then, depending on the size of T* M ~°, (6.9) will have
from two to six real roots. From Figure 1 it is apparent that the smallest
real root will always be less than D, and the largest always exceeds F.

In the limiting case F‘2 = 0, we obtain three double roots » =D, E, and

F, which by (6.4) correspond to the ends of the principal axes of the

energy ellipsoid (6.2), as indicated in Figure 1.

The general nature of the stationary values K(yc) can be determined
as follows. Ilet NM, Nm’ and Ns’ respectively be the number of relative
maxima, relative minima, and saddle points of K on (6.2). If these

numbers are finite, the Morse theory of critical points 4 asserts

Nm s 1 NM = 1
< < ‘
N =N, = 1, Ny~ N, =1 (6.10)
+ - = 2
Ny + Ny = N

If we disregard occurrences of double roots ), which will be taken into
account later, (6.10) yields the possibilities tabulated hereafter:

19



I IT IIT
Critical points 6 4 2
Ny + N L 3 2
N 2 1 0
s

When there are only two critical points, of course Nm = NM =1,

In the classical cases of rigid body motion or of motion of liquid

t t“é ds

minor axis of the energy ellipsoid, two minima at the ends of t

axis, and two saddle-points at the ends of the mean axis. K has the
I'e

the surface of the energy ellipsoid into four parts, each of which
contains a family of closed integral (or level) curves surrounding one
of the maxima or minima. Figure 2a is a schematic representation of the

system of integral curves on a cut and flattened ellipsoid.

As I varies continuously the locations of the critical points wil
JUNUTET T ST PR & s 1 Y l_,A.. R S — 2 ~ 2 P PN S T
vary convinuously Ol {(O.c) as Oolng a6 v = 1 ! 2 . Lonvinuous adepeln=
dence on I will assure that maxima of K move into maxima, minima into
minima, and saddle-points into saddle-points. For small r‘2 > 0, however,

*
+ 4 rn Ty
v (= N

he ues of K at the two saddle points must differ. To show this,
observe that by (6.3) and (6.4) we have
22
K = 2w, = K¥
—
at critical points, and then by (6.8) and (6.9)
2 2
o) = [ e D L€y L]
lgr (»-D) (A-F)" J
Then
LR 7 VA r rma ™ .121-\ S n2-n -
an™ [=1 e U J U ¥ L B
— = 2xl -(1-3 + (5 - 1) (6.11)
d 2
> Er 7 (n-D) E (A=F)



, \ 2 . s 2 =2,
Let 2¢ = min (E-D, F-E). Then for some e © Emin (Fy s, V5 ) we

shall have A dK*/dx >0 for all I© < Fe? and |A-E | Se. Furthermore,
2 2
there exists some S re such that (6.9) will have exactly two

. A 2 _. o fan L )
roots in |\-E]<e for F “ < F “. sSince dK¥/dx > O on the interval
joining these roots, this implies that for 0 < I “< o‘ the values

of K*, say ‘{1 and }{2, are different.

Now the level curves K = Kl and K = K2 ;é K1 must continue to
resemble lemniscates, with double points at the saddle points. Since
they cannot intersect, the situation for small 'F'g must resemble that
shown in Figure 2b. The four f:amilies of integral curves surrounding a
maximum or minimum within one of the lobes of K = Kl or K2 are obviouély
counterparts of families encountered for T = 0. The novelty introduced
for small 2 > 0 1is the occurrence of a fifth set of closed integral
curves, typified by the dashed curve between the level curves K = Kl

A

and K = K,. Al thcugn our proof that K £ K, is valid only or sufficiently

small values of I‘ , it seems plausible that the result is true for
o< r 2 < r 28.
2 2
As suggested by Figure 1, when = 5 one of the maxima (for

the conditions depicted in our graph) should coalesce with the saddle-
point S,. For r, 2 <r < r l , there remain two minima, one maximum,
and one sa.ddle-point Now there will be three types of closed integral
curves. When l"' ~ 12 one of the minir;a. wilé coalesce with the
remaining saddle-point. Finally, for 1 < 7, there remain one
maximum and one minimum. Now there is only one set of closed integral
curves. From Figure 1 it is clear that |JA] and |r| tend to infinity

together. Since for large |A|] we can expand

P - = Lol Z 1 B TR
v nNodyg ~ \+ 7 - 1 i~ 7
then by (6.6)
T |' n -n'| |' n -n'l 2 2
I* T+ SO ct1+% o™ J = oM\/r
L y J L y ) J -— w4 T .
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Tim (r/A)° = em/ologx
”‘": QO
Then by (6.5)
lim W o=+ (2T*/J*T0J'*)O'5J*
Fl=00 = 7 -0~

i.e., the critical points for || = co are at the ends of the diameter of

the energy ellipsoid parallel to J*.

=i

n the classical case, [ = 0, the components of W can be expressed
in terms of elliptic functions. For F‘ﬁ O end D, E, F all distinet trhis

no longer appears to be the case. For, let us attempt to express wy and

W 3 n an Integral curve. When we eliminate LA for

W_&as W

Z - ; X
example from (6.2) and (6.
b

O

)

5), we shall obtain, in general an equation
fourth degree in wy, in which all powers of
+

involving a polyncmial o
W  between zero and four can ac
azgebraic function of Vo and so, presumably, does W Thus integration
of the equation of motion that involves wx will presumably lead to some-
thing more complicated than elliptic funecilons. However, Dr. 5. Maszitis
has observed ti is parallel to & principal axis of ¢ then w is

expressible in terms of elliptic functions.

vally occur. Thus W, becomes a complicated



Axisymmetric Systems

In Section 6 we assumed that all characteristic roots of the matrix

the degenerate form

2 2 2
Dj E(k £ 2
l ( : R (7.1)
(»-D)"  (r-E)
We obtain a similar equation for the determination of A if we assume

that D, E, F are distinct, but exactly one of the components of J*
vanishes. Now for small l FI the analysis starts with four critical
points, one of which must be a saddle-point. With increasing | I |
we pass finally to two critical points, Just as in the more general

circumstances considered in Section 6.

: o (£ afenepatos
If D= E=F, then \u.6) degenerates to
27 2 2
DJ*“/(A-D)" = 2T*/ (7.2)
We obtain a similar equation, regardless of the nature of the

characteristic roots of C, if only one component of 2* is non-zero,
or if E=F and J = 0. A complete enumeration of the possibilities
has no especial interest, and in any event, all types that can arise
have been mentioned already. Now there are always only two critical

points.

1

To turn to the most important of these degenerate cases, suppose
our liquid-solid system is axisymmetric, with respect to the x-axis.
Much more can now be said about form of the velocity potential. Let

us introduce cylindrical polar coordinates

. ie
X = X, y +1z =r e

If we let n  be the radial component of the inward normal to S_, then

10
A4



Since now (x x n) = O, we observe that
g. =0 (7.3)
satisfies the relevant parts of equations (2.5) and (2.6). Since

. ie
(x x B)Z - 1(x x E)y = (nrx - nxr) e

Uz(f) - icy(f) = y(x,r) 18 (7.4)

will satisfy (2.5) and (2.6) if

o] o]
7y Ty .1 9 ¥
—s + —5 t=- — --+,=0 in S¥* (7.5)
8x2 8r2 r Or r2 L
n _a_Y +n é_‘{ =nxe-npr on C* (7'6)
b'e d3x r Sr r X L

where S5¥* 1s a cross section of V. in any plane © = constant, and C* is

its boundary. Obviously

t(x) = 9/2x (7.7)

satisfies (2.9) and (2.10) and increases by unity for each positively-

directed circuit of a circle x = X, T = r,

To write the equations of motion we would require
o T r 2
T‘ECLE'jVL%(VE'y av

By (7.3) and (7.4) this becomes

2T* = oL (w + w f [0* l-w + W + W 2] r drdx (7.8)

By means of (7.5) and (7.6), and Gauss' theorem this can also be

written in the more convenient form for calculation

2 2y [
2T* = - ﬂpL(wy + wz) j ot ry (nrx - nxr) ds (7.9)

2k



where s is arc-length along CE. Clearly the matrix CL is proporticnal
to
0 0 0
/ \
( 0 1 0 )
\ /
0 0 1

We also need J¥. Since for (7.7)

-2n (x x V1) = (-1, x cos §/r, x sin o/r)

then J* = ‘fv pp x x Vr 4V ylelds
L

-3¢ = (o, st*rdrdx, 0, 0)

the solid E, = F i.e.

Thus C = C_, + CL will also be diagonal, and the last two diagonal

S
elements will be equal.

Now (6.2) and (6.3) become

]

2 2 2
*
Dw,_+E (wy + W, ) = 2T (7.11)

. 2 2, 2 2 .
(D w3+ E (v + W, ) =K (7.12)

@]
«
[N
O
S
[v2]
[}
L}
o+
g
(g}
4]
4

¥
where j i1s the x-component of J¥ in (7.8). The interse

ellipsoids of revolutions are circles

%(=cmmtmm

=
+
£
i
)
=
<
'
e
=
:/
=3
il
=3



Thus the solutions of the equations of motion (6.1) become

wx = constant
_ (7.13)
w +1iw =R eiv (t to)
¥y z

where the rate of precession

v={(1- D/E)wx - rj/E (7.14)

For practical purposes one would certainly be primarily interested
in axisymmetric systems. However, it should be remarked that small
errors will occur in machining mmodels intended to be axisymmetric. If
many models are to be constructed, one may also deliberately abandon
nearly perfect dynamic axisymmetry because the effort to achieve it
does not result in sufficient improvement in the performance of the model.
Therefore the more general analysis of Section 6 may also have some
bearing on practical applications. For systems that are not quite
axisymmetric one would expect the full sequence of possibilities
depicted in Figure 2 to occur. In Figures 2a and 2b, however, the
and m;, would

1 1
presumably cover most of the surface of the energy ellipsoid, and the

areas occupied by closed integral curves surrounding M

remaining sets of integral curves should be cramped into a relatively

small fraction of the surface area.

[
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6. TOPOLOGICALLY COMPLICATED CAVITIES

Let us motivate the following discussion by beginning with a

special configuration. Consider a solid with a toroidal cavity VL

bounded by the concentric c¢cylinders r = rl x ro and the parallel

1 To modify the motion of the solid-liquid system let
us insert partitions on the planes 9 = 2nm/n, 1 § m § n. This will

planes x = + X

merely subdivide the cavity into n topologically spherical regilonms,

which c¢reates no dynamical novelty. Suppose, however, that all of the
partitions are pérforated. If each partition contains exactly one hole,
VL will be topologically toroidal (i.e. homeomorphic to the interior of

a torus). But if we suppose that some of the partitions contain more than

one hole the topological structure of V. will become more complicated

L
than the interior of a torus. Since the following discussion will not

be concerned with the exact number of perforations, we shall emphasize
its generality by suggesting that the partitions could even be
imagined to be made of finely woven wire mesh, to impart an extremely

complicsted topological structure to V..
= L

Now let us indicate how the treatment of the toroidal cavity can be

adapted to the case of a very general cavity V

not necessarily

, 0
constructed by the process described in the prgceding paragraph. In our
earlier discusslion, the topological nature of VL asserted itself

through applications of Gauss' theorem to various volume integrals

taken over V.. Let us suppose that VL is bounded by a two-sided surface

L

of genus N. In other words, V. can be considered to be topologically

L
equivalent to the interior of & sphere with N handles. Then, by the

insertion of N partitions S? we can make VL

Vi. With each partition Sf we associate a velocity potential function
J
Tj(z) which produces unit circulation on & closed path in V] from the
(arbitrarily chosen) initial side to the final side of S§. In fact,

TJ will be single-valued in the cavity of genus N-1 produced by

into a topological sphere

inserting only the partition S§ but none of the others. Now replace
(2.8) vy [2]

D (xt) =x . u(t) +ul(t) g (x)+ T (8.1)

 (
5F4)
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where [T, 1s a constant circulation associated with 7.. The boundary

J J

conditions fTor o (x) are as before, while, analogously to (2.1

Brj/an =0 on S

The kinetic energy of the solid-liquid system becomes

o T —
2T = Mu + W C w + A r,. r
- iy 13
where
r
AiJ~IV p; V. -VTJ av

is o constant positive-definite matrix. As before, the linear

momentum is

—oAam/NL. _ wm -
QL0 I

/

and the angular momentum
n_=aT/5E+ Z I'_.J"(”'j

where the axis vector

is associated wi

4
- DL L LU WL

For motion subject to no external moment we again obtain
energy integral

T, J——
w Cw = 2T%

and the angular momentum integral

(cw+ § ; 23)5 - K

N
V)

the

(8.3)

(8.4)

—~

\Ji
—

(8.6)

(8.7)

(8.8)

(8.9)

The search for the critical points, Mo of the function K on the energy

ellipseid (8.8) leads to

—~~
o

e



or

£
I

- - -1 *
(C - A1) ZrJgJ (8.11)
substitute (8.11) into (8.8) we obtain as an analog of (6.6)
T
g% F g% = 2T
At (ORI (8.12)
where

p()) = (€ - A1) e(c - At (8.13)

The analysis of the nature of the integral curves as a function of

the N parameters [, can be carried out along the following lines.

J

Suppose that n( S N) of the vectors Jg are linearly independent, where
154 b3 5. Let §a’ for 1 b3 a s n, be an orthonormal basis for the set
JS. Then we must have
2
H =1, H.H =0, a#p (8.1L4)
-1 —u"‘p

Also, there must exist an N x n matrix G, of constant elements, and of

Jox
rank n, such that
75 = T Ol (8.15)
-J 1 jo~
Now
N ' n N
T s - ? lv p— A
QJ% = ;
4;1~ Jij L JGJa) ga

Let Wa be any n-dimenslonal unit vector, 1.e.

no

TCoTW _=1 (8.16)

n
&g o
There 1s, of course, an n-l parameter family of Wa. Then for any
the system of linear equations

N

L ro_-ruw (8.17)
k]

5
[
Cus
Q
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has an (N-n)-parameter family of solutions I, . The general solution
J

of (8.17) is of the form

N-n
rj:r(73°+21 Aeyje) if F#0
(8.18)
N-n
r =Y A v if F=
J 441 e 7 Je 0

where vy is a particular solution of

Jo

and if ¥ > n, then 7je are N-n linearly independent solutions of the
assoclated homogeneous equations, and A€ are N-n arbitrary constants.

Now

N .
z r I* = \"nw H - ]
I e " (8.19)
and {8.12) takes the form
n T n
= 1 a 1 a

which is now more closely analogous to (6.6). The kinetic energy due to

clrculation is

2 2
0.5 ZAU ry Fy= [r ¢ if r#o0 (8.21)
1 a if r=0
where
2 R N-n
L‘= A = .~
e 05213(7io+zl ¢ ) Uio v 2 Ag 750)

(8.22)
=053 a4, YA, TNy
J 1 € 1

1€

22
Thus T*/ I “c” would be the ratio of kinetic energy due to w to that due

to circulation when ™ # O. Note that if N > n, then c2 and d2 may vary
with the choice or A .
€



If we make particular choices of Wa and 02, then in general we have
exactly the relation between " and the integral curves on the energy
ellipsoid that is described in Section 6. If N-n 2 2, (8.22) has an
(N-n-1) - parameter family of solutions Ae' This simply means that the
same set of motions of the system can be realized with an (N-n-1) -
parameter set of choices of the circulations r-J.

Since equation (8.20) is the crucial element in the discussion of
possible motions of the solid-liquid system, then the categorization of
motions should clearly be based on whether F= 0 or ™ % 0, and then, in
the latter cése, on the number of parameters, n-1l, required to determine
Wa. Thus there will be four major types of motion. The distinctions
between them could conceivably be visualized and clarified by describing

some of their properties, such as (1) the locus of the centers

-1 _ n -1
w=- OO R gy L WS (8.23)

of the angular momentum ellipsoids (8.9) as a function of I and Wa;
(2) the possible steady states of rotation for fixed M and (if possible)
variable W_; and (3) the limiting steady states for | I | = 0.

CASE I. If r = 0, then by (8.23) the center of the angular momentum
ellipsoid is at the origin. If N > n there may actually be circuits with
circulation F'J # 0, in accordance with the second part of (8.18). By (8.19)
for M=0 and (8.10) A must be a characteristic root of C, and v, a
characteristic vector. This leads to the familiar rigid body and spherical

cavity type of motion.

CASE II. If r‘#o and n = 1, the results of Section 6 are applicable word
for word. By (8.23) the centers of the momentum ellipsoids are on a
straight line through the origin parallel to C-¥§l. For fixed I there

are from two to six possible steady states of rotation, depending on the
magnitude of ™ . For | r | = @ there are two steady states of rotation
at the ends of the diameter of the energy ellipsoid parallel to the vector

C-l§1 . Such motions cccur, in particular, for toroidal cavities.

31



CASE III. If T # O and n = 2, by (8.23) the centers of the angular
tum ellipsoids are on a plane through the origin. Let us set

W, = cos 6, W, = sin 8. For fixed I and O there are from two to six

steady states of rotation, depending on the value of I . If © variles

while I remains fixed the critical points

W= - r[c-x(g,r)l]'l(cosg_l_{

Y. + sin © §2)

1

will trace a set of curves on the energy ellipsoid. In accordance

with the results obtained at the end of Section 6, for | | = o0 and
fixed © the two corresponding steady states of rotation will be at the
ends of the diameter parallel to E:W H = cos @ El + sin 6 §2' In other
words, for I r‘{ = @ the possible steady states are on the intersection

of the energy ellipsoid and the plane El X EE

. w=0.

CASE IV. If M# O and n = 3, then the centers of the angular momentum
ellipsolds can be anywhere in w-space. Let us set Wl = cos ¢ cos O,

W, = cos 4 sin o , Wy = sin 6. For fixed I, $ and 6, there will be
from two to six steady states of rotation, depending on the value of I .
If ﬁ and 8 vary independently while T remalns fixed, the critical

points

-1
W= - F'[C-L (4,0, )I] (cos ¢ cos 6 H

+cos § sin @ H, + sin ¢ H,)
—C —

1 2 TARE

will trace out reglons on the energy ellipsold. In accordance with the
limits calculated at the end of Section 6, for fixed ¢ and © the two steady
states of rotation for l r | = 00 will be at the ends of the diameter

of the energy ellipsoid parallel to

cos ¢ (cos @ H +sin 6 H

5) + sin ¢'§5

1

If we let ¢ and © range over all permissible values, we obtain the entire
surface of the energy ellipsoid.

Let us conclude by reiterating that Case I includes the topologically
spherical cavity (genus zero), and Case II the toroidal cavity (genus one).
It certainly seems reasonable to conjecture that Cases III and IV, respec-

tively, correspond to cavities, or at least to some cavities, of genera

5?



two and three, respectively. In a cavity of genus N it is possible to
assign arbitrarily N independent circulations I'J . For N’g 4k our
conjecture would imply that increases in genus do not lead to new types
of dynamic behavior, but merely present a greater variety of choices of
parameters ( F'J) to simulate the behavior of bodies with liquid filled
cavities of genera less than four. If there were only some mechanism
for randomly exciting and varying strong circulations in a body with a
complicated, liquid filled labyrinth, one might speculate that then by
virtue of the possibility of suddenly inducing degeneracies of the sort
discussed in Section 7, and thereby switching from motion of one type to
another, the behavior of the liquid-solid system could become highly

erratic and unstable.
9. K Yiese

J. H. GIESE
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